
Overfitting:오버피팅:과적합 방지, 해결을 위한 다양한 방법들
Overfitting, 과적합 딥러닝 모델을 연구하는 과정에서 피할 수 없는 문제인 과적합(Overfitting) 지난 포스팅에서 자세히 설명했던 과적합을 간단히 설명해보면 모델의 능력이 높아 학습 데이터를 다 외워버려서 실전 데이터를 판단하는 능력이 떨어지는 걸 뜻합니다. 즉 연습경기는 훌륭한데 실전 경기에서 실력을 보여주지 못하는 경우입니다. 사람에게 도움 될만한 인공지능 제품이 나오려면 모델의 높은 성능은 필수입니다. 모델의 성능을 높이는 과정을 과적합을 해결하는 과정과 같다고 표현할 수도 있을 만큼 모델과 많은 연관성을 가집니다. 모델의 능력이 높아질수록(모델의 층수가 늘어날수록) 성능이 떨어질 확률이 높아집니다. 성능이 떨어진 원인은 정말 다양하며 그에 맞게 해결하는 방법도 여러 가지입니다. 이..